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Permeation properties of three-dimensional self-affine reconstructions of porous materials
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A binary medium generation method is presented, which is capable of producing three-dimensional recon-
structions of porous solids. The method is based on the midpoint displacement and successive random addition
technique, which is, essentially, a graphical reproduction technique for the generation of self-affine media that
follow fractional Brownian motion(FBM) statistics. Thresholding of the site values at the desired porosity
value leads to three-dimensional porous constructions, the correlation degree of which is defined by the
preselected value of the Hurst exponent. The correlation length of such single-cell media is comparable to the
size of the working cell and, therefore, this approach would be of local use only. To remedy this problem, a
method for producing multicell FBM media is presented, which is capable of generating media with size
considerably larger than the correlation length and, as such, they can be employed to simulate a variety of
actual porous solids. The percolation properties of these reconstructions are investigated and the specific
surface area is calculated as a function of the porosity, the number of interwoven cells, and the Hurst exponent
value. Furthermore, the flow equations are solved numerically within the void space of the three-dimensional
FBM media and the effects of structure porosity and correlation degree on the permeability are studied.
Application of the methodology to a sandstone sample as a case study showed a very good agreement of the
numerical predictions for the permeability with actual permeability measurements and with the permeability
estimate using a serial sectioning technique.

PACS numbes): 81.05.Rm, 47.55.Mh, 47.58n, 05.40-a

[. INTRODUCTION that the construction of interwoven FBM binary lattices can
lead to a robust representation of porous media, with im-
It has been recently realized that many natural porougproved behavior of their structural properties compared to
media and aquifers exhibit long-range correlatiphlswhich  that encountered in traditional, single-cell FBM lattices.
are responsible for their unusual transport and percolation The applicability of the method to generate images that
characteristics compared to those of disordered media withesemble real porous media was already demonstrafed. in
short-range correlations, or even of random méaia3]. A Raw experimental data, namely, the porosity and autocorre-
special class of long-range correlations is the one that foltation function, can be used to adjust the reconstructed im-
lows the statistics of fractional Brownian motioRBM) [4]. ages to samples of the real solids under investigation. More
This property appears to characterize a number of naturapecifically, microphotographing of thin sections of the ma-
systemd5], and relates to the structural and transport propterial followed by image processing can yield information
erties of heterogeneous porous medsze, for example, about the porosity and autocorrelation function, the statistical
[1-5] and the references cited thergin adequacy of which depends mainly on the homogeneity and
In a recent publicatiof6], the authors presented a methodisotropy of the material. Subsequently, FBM media can be
for the reconstruction of porous media by generating two-generated that match these two structural properties, though
dimensional lattices that follow FBM statistics. A modifica- in two dimensions, assuming invariance along the third one.
tion of the conventional midpoint displacement and succesThe range of structural and flow properties of such porous
sive random addition method was employed in that work inreconstructions can be very broad, so that different classes of
order to generate multicell, interwoven binary media withporous media can be efficiently simulated using this method.
sizes that are considerably larger than the correlation lengtim addition, the method is relatively simple to use and offers
of the medium. It was found that multicell FBM porous me- an alternative to other stochastic reconstruction approaches
dia possess very interesting structural properties that ar@ee, for instance]7], and references therginwhich can
functions of the Hurst exponent, a parameter characterizingrove tedious for routine applications.
the FBM stochastic proce$d], and the porosity of the me- In the present paper, the limitation of the method to two
dium, only. In addition, they exhibit stronger structural cor- dimensions is removed. We describe the generation of three-
relation, lower specific surface area, higher percolatiordimensional porous structures using a midpoint displacement
threshold, and lower permeabilities than those of the corremethod, suitably adjusted to apply to cubic lattices. The re-
sponding traditional single-cell FBM media. It was found sulting media follow FBM statistics and, as in the conven-
tional two-dimensional single-cell case, the correlation
length is comparable to their overall size for finite correlation
*Permanent address: Chemical Process Engineering Research thegree. In order to overcome this problem, we have modified
stitute, P.O. Box 361, GR 570 01, Thermi, Thessaloniki, Greece. the construction procedure so that multiple cells can be gen-
TCorresponding author. Electronic address: vbur@iceht.forth.gr erated that share the same structural properties but are prop-
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erly interwoven so that continuity across their boundaries is

N
ensured. The size of the three-dimensional structures that ar - v ,3\/‘4/ "D/@
generated in this manner is much larger than the correlatior 4 A/U 0/\
length and, consequently, average properties can be obtaine & .

that are independent of the size of the working sample. In
addition, these multicell media are shown to follow FBM
statistics and to share the same Hurst exponent value as thi
used for the construction of the basic cells. Percolation prop-
erties are determined for various working sample sizes anc
the effect of the interweaving process is discussed. The spe )
cific surface area is also calculated and a comparison be (@
tween the single-cell and the multicell cases is made. The
absolute permeability is subsequently calculated as a func
tion of the correlation degree.

The methodology is applied to a Vosges sandstone
sample, for which sufficient experimental data are available
for the sake of comparison with the model results. Multicell
FBM media are generated that match the porosity and the 0=
autocorrelation function determined experimentally through
digitization of thin sections of the sample. It is found that the
permeability estimate compares well with the measured
value and the agreement improves as the number of cells
used to generate the medium is increased. The specific sul
face area of the generated medium is also found to compari
satisfactorily with the corresponding value obtained from se-
rial tomography. Given that for engineering applications
even an order-of-magnitude estimate of the permeability is
considered a success, the convergence of our results t
within a few percent from the available experimental value is
very encouraging, especially since a minimal amount of in-
formation is needed for the reconstruction procedure. The
agreement between our theoretical predictions and the ex

perimental values justifies a further investigation of the ap- \C%

plicability of the method to other reservoir rocks and other . ~

types of porous media that are known to exhibit long-range ) _
Cell j Cell j+1

correlation[1-3].
FIG. 1. Midpoint displacement in three dimensions. Top: startup

Il. GENERATION OF A BINARY MEDIUM FOLLOWING cube in the single-cell case. Bottom: interweaving in the multicell
FBM STATISTICS case(averaging in polygon-shaped sites extends into adjacenj.cells

Following Mandelbrot and van Ne$4], one defines frac- Gaussian distribution with average 0 and standard deviation

tional Brownian motiorBy(x) as a process that satisfies 1 at the eight corners of the starting three-dimensi¢aB)
cube(stage 1. Subsequently, the center of each cube is as-

(Bu(x) —By(X))=0, (18  signed the average of the values of the eight cube corners
increased by an additional Gaussian deviatage 2. Next,
([BH(X) = Bp(Xo) 1%y ~[x—Xo|*", (1b)  the centers of the six faces of the cube are assigned values

that are averages of the face corners, also increased by

whereH is the Hurst exponent. Fof =3, one recovers the Gaussian deviatestage 3. Then, the midpoints of the 12
classical Brownian motion. Fdil >0, FBM entails spatially edges of the cube are decorated as the averages of the cor-
growing correlations, whereas for strongly negativealues  responding endpoints increased by Gaussian deviatage
the medium becomes, practically, random. Excellent reviewg). Thus, we have generated eight new smaller cubes inside
regarding the properties of FBM can be found elsewherghe original cube and decorated the new sites using the mid-
[8-10Q. point displacement method. The above procedure, continued

Several variants of FBM have appeared in the literaturewith the decoration of the centers of the eight new cubes
In a previous study6], we described in detail how one can (stage 5, is repeated several times until the desired resolu-
generate single-cell and multicell FBM lattices in two di- tion is achieved. The general rule is that at each new stage,
mensions using the midpoint displacement method. In théne newly defined sites are assigned values that result from
present study, the method is extended to three dimensiongeraging the values of the closest neighboring sites and add-

and combined with successive random additions to yielgnhg random deviategmidpoint displacemeptwith variance
three-dimensional self-affine media. Figuré&dp) shows the satisfying

first few stages involved in the construction of single-cell 5 o 2
FBM lattices. Initially, one assigns random numbers from a Opt1=I" 0Op. 2
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In contrast to the two-dimensional case, the value diat
scales the resolution at each stage of the process is not con-
stant, but changes with the type of site to be decorated. More
specifically, r =v3/2 when decorating the body centar,
=1AW2 when decorating the face centers, and1/2 also
when decorating the edge points in each cube, in this se-
guence.

The older sites can either retain their original values or be
updated by a random addition of deviates with variance
o2, (successive random additioriThe above procedure
generates a 3D lattice with sites following FBM statistics
[2,5,6,8,9. In order to transform it to a binary medium of a
given porositye, one simply sorts the site values in a one-
dimensional array of ascending order and assigns zero values
to the lower part of the array with length {1)N,N,N, and
the value of one to the rest, whelg, Ny, andN, are the
number of lattice points in th&, y andz direction, respec-
tively. Note that throughout this study, unless otherwise in-
dicated, it is assumed that,=N,=N,=N.

From a statistical point of view, such media cannot be
used as valid representations of a real porous medium since
they contain only a limited number of pores in each realiza-
tion [6]. To remedy this, one can resort to interwoven mul-
ticell, 3D FBM lattices. This is accomplished in the present
study following a procedure similar to the one introduced
recently by the authors in the two-dimensional cg&e The
original lattice is divided into a number of smaller lattices,
each of which is decorated according to the standard FBM
procedure outlined above using a fixed valué¢doHowever,
the lattice points on the boundaries between adjacent sublat-

tices receive contribution from all immediately neighboring (H=0.7,2=0.2, black: solid phaseVariation with the number of

cells during the ave_raglng procedure. Figure(tbttom cellsN,, keeping the random number generator seed and the size
shows two adjacent interwoven cells. Polygons are used % the unit cells constantN=8)

indicate boundary sites that are decorated using contributions
from the immediate neighbors, whereas circles indicate in
ternal sites that are assigned averages of sites that belong
the same cell. An illustration of the results of this construc-

tion technique for lattices with various numbers of individual standard techniqudd,13), this section can be mapped on a

celis N, while retaining the porosity and_ Hurst €XPOnent 5 matrix of binary pixels, which take the values of 0 and 1
values constant, is presented in Fig. 2. It is self-evident tha]-

o . ; . h the solid and pore phases, respectively. Accordingly, the
the above modification can generate lattices with, practically hase function of the medium is defined as follows:

any degree of correlation desired, and sizes that are consid-
erably larger than the correlation length.

(e)N,=16

FIG. 2. 2D sections normal to theaxis of the 3D FBM lattice

tion of 3D FBM media is calculated as the average of all 2D
8ctions normal to a given direction, say thaxis.
Consider an actual 2D section of a porous medium. Using

1 if x belongs to the pore space
. . 3
0 otherwise

Z(x)=[

IIl. STRUCTURAL PROPERTIES

wherex is the position vector from an arbitrary origin. The
OF THREE-DIMENSIONAL FBM BINARY MEDIA

porositye and the normalized two-point correlation function

A. Correlation function R,(u), can be defined by the statistical averafgd3|
The correlation properties of reconstructed media are of —(7(x (4a)
critical importance for the assessment of their resemblance to e=(Z(x))
actual materials. In terms of continuous variables, such as the
local conductivity and permeability, percolation properties of R,(U)= ([Z() —ellZ(x+u)—e]) (4b)
FBM media have been determined in one and two dimen- z s—g? '

sions by several authors using various definitions of correla-

tion functions, semivariograms, etfl,10-12. The main  Note that() indicates spatial average. For an isotropic me-
difference with the present line of work is that the FBM dium, R,(u) becomes a function ai=|u| only [7]. A rep-
process is applied here to the structure itself and not to somesentative reconstruction of a medium in three dimensions
transport property. Recently, the authors determined the twashould have the same correlation properties as those mea-
point correlation function for 2D binary media that follow sured on a single two-dimensional section, expressed by the
FBM statisticg 6]. In the present work, the correlation func- various moments of the phase function.
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AUTOCORRELATION FUNCTION

-0.24

DIMENSIONLESS DISTANCE, u

0.4

FIG. 3. Effect of the number of FBM cells\(;) on the autocor-
relation function, averaged over 10 realizations, keeping the size of
each individual cell constantN=8). H=0.7,¢=0.5.

It is interesting to examine the variation of the correlation |G, 5. 2D sections normal to theaxis of 3D EBM lattices
function with the number of cells in the multicell FBM lat- (¢=0.2, black: solid phase Variation with the value of the Hurst
tice, shown in Fig. 3 foH=0.7 ande =0.5. The distance is exponentH, keeping the random number generator seed constant
expressed as the number of pixels, for easier scaling. TheN,=16,N=8).
same definition is used for the distance throughout this pa-
per, unless otherwise noted. Figure 3 reveals that the corrgy (H>1) lead to strongly correlated porous structures,
lation curve is affected rather weakly by the number of cells,hereas values ofi<1 lead to less correlated structures.
and forN,>6, it remains practically unchanged. This is a gyficiently negative values df yield, practically, uncorre-
quite useful property of multicell media, implying that the |5t6q media. A quantification of this observation is given in
correlation properties are independent of the size of ey 6 \where the corresponding correlation functions are
working sample. It is also interesting to investigate possibl%btted against distance, expressed as the number of pixels,
anisotropy effects in the 3D multicell FBM media. To this o gifferent values oH. As H decreases, the degree of cor-
end, the correlation functions in each principal directionyg|ation decreases too, in accord with the visual inspection of
were calculated by averaging all 2D sections along each digyg ¢orresponding images of Fig. 5. Furthermore, increasing

rection. As shown in Fig. @), all three curves foN,=8  iho [attice size of each cal, while keeping the rest of the
almost coincide, thus verifying isotropy in the structural harameters constant, results in stronger correlation. How-
properties of the multicell FBM 3D lattice. ever, since the pixel size of the lattice is also decreased by
It is interesting at this point to observe the effect of theihe same factor, if the correlation function is plotted in terms
Hurst exponent on the morphology of the FBM structures,y actyal distance, that is, in length units and not in pixel-

following thresholding of the generated deviates at the poyymper units, the resulting curve coincides with the one ob-
rosity value. As illustrated in Fig. 5¢(=0.2), high values of
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FIG. 4. Comparison of the average autocorrelation functions FIG. 6. Effect of the Hurst exponent value on the autocorrela-
taken over all 2D sections cut across each principal direction of gion function of multicell FBM media(N,=10, e=0.2, N,= 16,
3D FBM lattice withH=0.7 ande=0.5 (N,=N=38). N=8).
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FIG. 8. Dimensionless specific surface area vs lattice size, for
single-cell FBM media.

(d)N=128
104 of the construction algorithm and parameters on the specific
] X N=16 N, = surface area of the generated media, and ensure that the con-
- o A N=32 f_f:obi struction procedure provides the necessary flexibility to
S g O N=e4 ' cover a broad range of specific surface area values, so that it
'g 1 © can be applied to simulate actual porous materials.
2 %6 g In the limiting case of completely randomized binary me-
Z & dia, the specific surface area is given by
E 0.4+ ﬁ<> 6 1
3 8 . e(l—eg)
'6:“ ] &o Sv,random_ a R (5)
g s
O 024 0&
O <
o o wherea is the size of the unit element, following a rigorous
~ BN . P
2 @ —_— % e proof by Burganog14]. For correlated media, it is known
2 4 6 °°<>é% on0s 10 12 that the specific surface area can also be determined from the
CROORS R slope of the autocorrelation functioR,(u), evaluated ati
-0.2- p
' DIMENSIONLESS DISTANCE, uN/16 =0 [15]:
FIG. 7. Effect of the lattice size on the construction of single- S,=—6(e— SZ)RQ(O)- (6)

cell 3D FBM media, using the same random number generator seed ] ] ] )
(6=0.5,H=0.7,N,=1). (8) Morphology of generated imaget) The calculation of the internal surface area of discretized

Correlation function of generated media. The distance is rendereedia can be implemented through identification and count-
dimensionless using as reference the pixel size if\thel6 case.  ing of the solid/void interface segments, based on the iden-
tification code(0/1). The results for single-cell FBM media

tained for the original lattice. This was also the case for 2D2r€ shown in Fig. 8, plotted against the lattice siXeFor
FBM media[6]. This result is illustrated in Fig. 7, in the Sufficiently large lattices, linearity is obtained in log-log
form of image morphologya) and corresponding correlation Scale for all Hurst exponent values in the inter{@/1] ex-
function (b). Note that the abscissa in Fig(J is the dis- amined here. That is,

tance between two points, rendered dimensionless using the

pixel size in a given lattice sizeN=16) as reference i:
(uN/16). This choice was made to avoid automatic scaling Si2
with the change of the lattice size. It is confirmed that the

curve of the correlation function remains, practically un-wheregis the negative of the slope of the lines and is char-

changed when the lattice size of the FBM medium is alteredacteristic of the correlation degree of the medium. In fact, it
practically coincides with the Hurst exponent vakdewhich

verifies that the generated media follow FBM statistids:

=3—H is the fractal dimension of a zeroset of an FBM
The evaluation of the internal surface area of a porougrocess in three dimensions a®j=xa? %, that is, S,a

medium is of primary significance in the modeling of fluid- «N~".

solid interaction phenomena, such as sorption, surface diffu- Switching from single-cell to multicell media results in

sion, chemical reaction, infiltration, etc. In the context of theincreased correlation, as shown in Fig. 3. This implies that as

present paper, it is very interesting to investigate the effectthe number of patchebl,, increases, the specific surface

-1
: (7)

ai

a,

B. Surface area
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high H values, which implies the validity of Eq7) also for
£=05 multicell media. The slope of the lines is approximately
104 equal to the negative of the Hurst exponent, just as in the
single-cell case. The only difference is that the computa-
o . H=00 tional requirements for the multicell media are heavier than
[ P e S AP N SO in the single-cell case by a factor Nf; and, consequently,
detailed calculations at the limit of large unit cell siz&$§
084~ are prohibited by, mainly, computer memory limitations.
o : Nevertheless, Fig. 9 indicates that the vaNig=8 is sulffi-
04 ; ciently high for convergence with respect to the number of
cells and, consequently, it may be argued that the linearity of
\'\+‘ ___________ 2 _— the curves in Fig. 10 is of general validity for multicell me-
dia and with fractal dimension that satisfids=3—H, just
, as in the single-cell case. Thus, it is claimed that the three-
0.0 T T T T . T T T v dimensional media generated here are indeed self-affine,
FBM structures.

N
1
2
1]
-
[+

0.2 A

DIMENSIONLESS SPECIFIC SURFACE AREA, (S a),
!

NUMBER OF PATCHES, N,

C. Percolation properties
FIG. 9. Dependence of the dimensionless specific surface area . . .
on the number of patches in 3D, multicell FBM media. Variation . Early and recent stUQIes have shown that blnary media
with the Hurst exponent value. with !ong-range'corr'elatlons show completely different per-
colation properties, in terms of percolation threshold and/or
5 aling characteristics, from those of random or even short-
range systemfgl0,16—18. A notable conclusion of detailed
percolation studies on 2D systems that follow FBM statistics

area should decrease. This is indeed the case, as seen in
9. It is also noteworthy that the specific surface area attains

limiting value for sufficiently largéN, values, which is char- {2,6,18 is that the percolation threshold, , of these media

acteristic of the porosity and the Hurst exponent value. Thi d iable with | that d
constitutes an advantage of multicell media compared tg° @ random variable with a mean va(pC), at decreases
with increasingH in a monotonic fashion. Moreover, the

single-cell reconstructions, which suffer from the depen-

dence of the dimensionless specific surface area on the ovecrgnstructlon .Of. multlce_ll .ZD FBM Ia_ttlce§6] Iea_lds to de- .
creased statistical deviations of their percolation properties

all size of the medium. The surface area of multicell rnediabut also favors clustering of large cavities, thus giving rise to
decreases upon increasing the valueHofor, equivalently, . . 9 9 ' giving
increased percolation threshold values.

E?gongmtensﬁymg the structure correlaims confirmed in In the present study, mean percolation threshold and stan-
An additional property of the multicell media that are dgéﬂ %EB”f‘;{gge\gai:uoenssf‘r[lecge(}egm'tr;]zdr:%s:)r;g:e(;?:nlsggmrgwt'

constructed in the aforementioned manner is that they d ; ! Y P pac
echnique. Following the studies of the corresponding 2D

follow FBM statistics, just as their unit cells. Figure 10 dia in th i K ; tinate the effects of th
shows the dependence of the specific surface area of threfred!a, In the present work we investigate the efiects ot the
number of cellgor number of patchedy,), and the value of

dimensional multicell media on the lattice size of the basicth Hurst i h lation threshold i
cells for various values of the Hurst exponent. Note the lin- € Hurst exponerty, on the percolation thréshold properties
f 3D FBM media, using a large number of realizations for

rity of th rr ndin rves for low, intermedi n . .
eatity of the corresponding curves for low, intermediate, a 0Zach data set. The cluster labeling algorithm proposed by

Hoshen and Copelmdri9], and described also by Stauffer
and Aharony[ 20], is employed in the present study to deter-
mine the percolation threshold.

The numerical results of this investigation are summa-
rized in Table I. The values for the average percolation
threshold in 3D FBM lattices are considerably lower com-
pared to the corresponding 2D cases, as expected. Moreover,
keeping the lattice size constarill€ 16), the average per-
colation threshold decreases as the number of cells increases,
until a constant value is attained for a sufficiently large num-
ber of cells N,>8). Hence, in the case of 3D FBM lattices,
the interweaving process tends to connect isolated clusters
that exist in the single cells, resulting in the formation of
014 alternate paths to percolation and, consequently, in a lower
_______ percolation threshold compared to the single-cell case. The
standard deviation, on the other hand, decreases considerably
as the number of cells increases, confirming the statistical

BASIC CELL SIZE validity of multicell FBM lattices in terms of their structural
properties.

FIG. 10. Dimensionless specific surface area vs lattice size of Finally, the effect of the degree of correlation, expressed
the basic cell, for multicell 3D media. in terms of the Hurst exponent valli& on the average per-

-
PU—r— |

DIMENSIONLESS SPECIFIC SURFACE AREA, (S8),
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TABLE I. Percolation threshold values for single and multicell FBM lattices. Number of realizations:
500. Note Values reported here correspond to percolation through either principal direction.

Multicell reconstructions

Single-cell
H No,=1, N=64 Np=2,N=16 Np=4,N=16 Np,=8,N=16 Np,=10,N=16
0.95 0.0830.062 0.104-0.051 0.09%0.033 0.08%0.021 0.08%0.016
0.7 0.084-0.053 0.104-0.048 0.096:0.031 0.088:0.020 0.08%0.016
0.3 0.083-0.037 0.108:0.040 0.096:0.027 0.096:0.017 0.08%-0.015
0.0 0.109-0.028 0.136:0.035 0.111*0.025 0.105:0.016 0.106:0.013

colation threshold values appears relatively weak compareldy the continuity equation, an artificial compressibility tech-
to the 2D case, especially fét>0.3, probably due to the nique was employe{6,22], according to which an accumu-
increased connectivity obtained upon switching from two tolation term for the pressure is included in E§b). In this
three dimensions, which facilitates permeation drasticallyfashion, the steady-state problem is replaced by an unsteady
and reduces the percolation threshold to relatively low val-one, which converges to the incompressible steady-state so-
ues. It is also noteworthy that the standard deviation of thdution for a sufficiently long time.
(pc) estimates decreasestdslecreases, as was also the case The mesh spacing in each direction is a fraction of the
with the corresponding calculations in 2D FBM megi&d. size of the unit elements. More specifically, it is expressed
here asAx=Ay=Az=ay/Ng, whereNg is an integer de-
noting the discretization level inside each void unit element
of sizeay. Convergence was achieved when the calculated
flow rate values were found to fluctuate less than 1% across
the various cross sections of the medium. For a given real-
The creeping flow of a Newtonian fluid in the interstitial ization, it was found thalNs can have some nonnegligible
space of a porous medium is described by the Stokes equanpact on the permeability valui, in full agreement with
tion coupled with the continuity equation: earlier studie§21]. Nevertheless, the effect M tends to
diminish as the value dfl increases, or, equivalently, as the

IV. FLOW IN A THREE-DIMENSIONAL FBM POROUS
MEDIUM

A. Calculation of the flow field

VP=uV?, (88 size of the unit elemerd decreases sufficiently. In general,
convergence was relatively rapid in the medium and high
V.v=0, (8b) porosity region £>0.4), whereas it was significantly slower

) . in the vicinity of the percolation threshold €0.2). This is
wherev andP are the local velocity and pressure of the fluid, ayriputed to the fact that, in the latter case, large isolated
respectively. The boundary conditions foare spatial peri- regions are likely to develop, which may be connected via
odicity and no-slip at the surface of the solid unit elements, 5 row necks, that apparently hinder the updating of the ve-
A macroscopic pressure gradieW is specified and the |qcity and pressure values across the porous medium.
seepage velocityv), defined as the superficial velocity av-

eraged over a cross section of the medium, is relatédRo

by the permeability tensdf, as follows: B. Permeability results

The average permeability of porous media generated by
FBM lattices has been determined for different structural pa-
K is a symmetric tensor that depends only on the geometry dAmeters, such as lattice sixenumber of cell\,,, porosity
the system. For isotropic media, g, and degree of correlation, obtained by varying the value of

the Hurst exponernitl. The results are averaged over a num-
(10 ber of random realizations, constructed with the same set of

structural parameters, in order to limit possible statistical er-
wherel is the unit tensor. rors. Given the relatively large size of the 3D working

Hence, in order to determine the permeability from Eq.samples N N=64) used in most of our computations, a
(9), one needs to calculate first the flow field by solving therelatively small number of realizationd0) was found to
flow and continuity Eq.(8) with the appropriate boundary suffice for statistically meaningful permeability resulgd].
conditions. The numerical method employed in this work is  Figure 11 presents the effect of the lattice shkk®n the
similar to the one used by Adler and cowork¢rs21]. A value of permeability, for a single-cell FBM medium, at high
finite difference scheme using the marker and ¢®IAC) (0.8 and moderat€0.4) porosity values. Doubling the lattice
method[22] was employed. More specifically, a staggeredsize N yields a fourfold increase of the value Kf'a?, for
marker-and-cell mesh is used, with the pressure defined aufficiently large cells =16). Since doubling the value of
the center of the cell, and the velocity components definedN translates to reduction of the unit element side by the
along the corresponding face boundaries of the cell. Succe$actor of 2, the aforementioned fourfold increase of the di-
sive overrelaxation(SOR and conjugate gradienCG)  mensionless permeability implies that the dimensional value
methods were used to solve for the microscopic velocityof the permeabilityK, remains constant. In other words, for
field. In order to cope with the numerical instabilities causedsufficiently large latticesN\=16), the absolute permeability

(V)= —(Klu)-VP. 9

K=KI,
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FIG. 11. Dimensionless permeability vs lattice size for single- FIG. 13. Variation of the dimensionless permeability of 3D
cell FBM media(N,=1, N, = 1). Effect of the discretization param- FBM media with the number of cell,, for high and intermediate
eterNy. porosity valuegN=8, H=0.7,N, =10, Ng=1).

is in\{ariant with re;pect to the res_o_lution _of the Iattice_. Note ected, the permeability increases with the value of the Hurst
that in the same figure, permeability estimates for d'fferengxponentH, for both porosity values examined here. It is
values of the discretization paramete are indicated. AS jnteresting to note that the permeability of strongly corre-
expected, the smaller thg lattice size the stron_ger the effect (Péted FBM media can become almost two orders of magni-
Ns on the numerical estimate of the permeability. More speyde higher than that of weakly correlated porous media,
cifically, in the case of high porosity media{0.8) with  eyen for moderate and high porosity values, that is, even
N=8, the relative change in permeability is around 13.7%g\ay from the percolation threshold. This observation is in
when switching fromNs=1 to Ny=4, whereas foN=16 || alignment with the corresponding results for 2D FBM
this change drops to about 6%. The corresponding values igedia[6], and implies that FBM porous media can be em-

the case ok =0.4 are 12.6% and 3.3%, respectively. There-pioyed in the study of flow in actual porous media over a
fore, when studying the resolution effect on the flow properyige range of permeability values.

ties of FBM generated structures, one should take into con- Figyre 12 reveals that relatively large error bars are ob-
sideration the lattice sizeN, in conjunction with the tained during permeability calculations for single-cell FBM

disc_retization parameteNs. media (N,=1). If these calculations are repeated for a much
Figure 12 presents the dependence of the average permgrger number of cellgbut with N=8 and Ns=1 to keep
ability K, for Np=1, N=32, andNs=1, on the value oH  computational requirements within reagorsignificantly
for high (0.8) and moderatg0.4) porosity levels. As ex- |ower standard deviations for the same structural properties
of the lattices are obtained. The permeability predictions for

109 two porosity values varying the number of cells,, are
s 1 N=7 presented in Fig. 13. Note that fdt,=4 the average per-
N VR : meability remains nearly constant, but the corresponding
N ‘°'_ ! f f standard deviation keeps decreasing as the number of cells
& ] : increases. Based on these results, it can be claimed that a
5 o value ofN,=6 is close to optimal, as it combines computa-
$ I 1- tional efficiency with statistical accuracy in terms of average
& 1 T f and standard deviation values for the permeability. In addi-
f,L, 1074 tion, according to the results shown in Fig. 3, the autocorre-
@ ] f lation function remains practically constant fidp=6.
=
§)
2 107 f ® :=08 V. APPLICATION
L 1
= 1 m =04 It was shown in a previous worf6] that 2D muilticell

10° e — - lattices built with an FBM process could be potentially em-

0.0 02 04 08 08 1.0 ployed to simulate the structure of actual porous media. In

particular, we showed there that images of Vosges sandstone
samples could be effectively reproduced by employing the
FIG. 12. Dependence of the dimensionless permeability ofcell interweaving technique. In the present study, we repro-
single-cell 3D FBM media on the value of the Hurst exponentduced three-dimensional images of Vosges sandstone and
(Np=1,N=32,N,=10). calculated the permeability of the reconstructions. The fol-

HURST EXPONENT, H
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10’ results of the methodology suggested here are, practically,
] insensitive to the overall size of the reconstruction.
In addition to the permeability investigation, we found it

Experimental very tempting to compare the specific surface area of the
_____ Y reconstructed media to the actual specific surface area of the
sample studied. The FBM reconstructions had, on the aver-
age, specific surface area equal to &X3% m !, which
compares well with the value obtained from the serial to-
mography method, 0.5210°m~!. The agreement is very
good and is due to the matching of the corresponding auto-
Vosges sandstone correlation functions, which, in turn, relate to the specific
H=07 surface area through E). The corresponding mean chord
7\/2‘;-6765 lengths are found to equal 12.0 and 1 respectively,

using the well-known expressiotd=4¢/S,. As expected,

10° - : : , the agreement is again quite satisfactory.
0 2 4 6 8

Serial
sections

PERMEABILITY (m darcy)
;

NUMBER OF PATCHES, N
P VI. CONCLUSIONS AND FURTHER REMARKS

FIG. 14. Effect of the number of cells on the estimation of the A methodology for the generation of three-dimensional

permeability of Vosges sandstone using FBM med=(6).  images of porous media is presented, using a minimal set of
Comparison with the experimental value and with the prediction ofygyy experimental data, namely, microphotographs of two-
the serial sectioning technique. dimensional sections. The methodology is based on the mid-

point displacement and successive random addition tech-

lowing steps were taken: First, a reasonable lattice size wasique, suitably adjusted to a cubic lattice. The resulting
selected, which would allow not only reconstruction in threebinary media follow classical FBM statistics to a good ap-
dimensions but also the numerical solution of the flow equaproximation, and appropriate thresholding at the desired po-
tions, with sufficient accuracy. A combination of pixel size rosity value can yield three-dimensional porous media in
and Hurst exponent values was found that allowed a satisdigitized form. The degree of structure correlation is adjusted
factory fit of the simulated correlation function curve with through the Hurst exponent value, which, in turn, is selected
the experimental ong23]. The thresholding stage was in a fashion that allows sufficient matching of the autocorre-
straightforward and the desired porosity value was easilyation function of the reconstruction with that measured on
achieved £=0.165). Care was taken during the correlationphysical sections of the material. Thus, not only does the
function matching to express the distance in actual lengtimethodology presented here offer the flexibility to match
units. Once the reconstruction was completed, the flow probexperimental data for the porosity and the autocorrelation
lem was solved, following the procedure described abovefunction, but it does so through a well-defined specific cor-
The average permeability was then calculated, using a suffrelation process.
ciently large number of realizations for statistically meaning-  Evidently, the size of the resulting reconstructions is of
ful results to be obtained. In order to study the sensitivity ofthe same order of magnitude as the correlation length, owing
the methodology to the overall working sample size, the ento the construction process, which is centered around the
tire procedure was repeated for different valuedNgt geometrical center of the working sample and vyields long-

The results are presented in Fig. 14 and compared to thenge correlations. To overcome this problem, which is typi-
experimental value found in Reff23] and to the numerical cal in these types of reconstructions, we have devised an
estimate of the permeability based on serial tomographyalgorithm that allows the generation of three-dimensional
More specifically, in a previous worf23], serial tomogra- media made up of individual cells, each of which follow
phy was applied to this particular sample, which provided a&~BM statistics with the same value of the Hurst exponent.
series of 45 sequential sections, taken every 404 The  These cells are properly interwoven across their boundaries,
sections were digitized and the phase function was deteso that a much larger medium is obtained, with a size con-
mined in three dimensions. The flow equations were theiderably larger than the correlation length of the construc-
solved, again, using this time the actual digitized structuretion process. In this way, reconstructions that closely re-
with a resolution of 48X 500 pixels in each section. The semble actual porous media can be obtained, involving a
agreement between the FBM and the serial sectioning agsignificant number of individual “pores.”
proaches is quite satisfactory, despite the rather small work- Numerical calculations showed that the Hurst exponent
ing samples employed in the FBM reconstructions due tovalue can affect quite strongly the correlation degree of both
computational constraints. In addition, the agreement witlsingle-cell and multicell FBM media. Increasing tHevalue
the experimental value is also satisfactory, taking into acresults in stronger correlation for the same porosity value. In
count the fact that the size of the sample studied was rathexddition, as the number of individual cells, or patches, in-
small (volume of sample 0.33 mtcompared to the scale of creases, the correlation degree also increases and the perco-
possible heterogeneities and the size of the sample used flation threshold decreases to very low values. This is a par-
the permeability measureme(drder of cm. As expected, ticularly useful result toward the simulation of actual
the effect ofN, is rather weak, providet,=6, in accord materials, in contrast to the use of random reconstructions,
with the relevant discussion of Fig. 13, which means that thevhich exhibit rather high percolation thresholds. The specific
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surface area of 3D single-cell FBM media is a function of theselected so that the simulated correlation function matched
lattice size, and the calculated fractal dimension almost cothe experimental one. It was found that the calculated per-
incides with the fractal dimension of the zerosets of FBMmeability values compared well with the measured values.
processes in 3D, namelg;=3—H. As the H value in- The error was relatively small and could be due to a variety
creases, the specific surface area decreases, owing to the of-reasons, including possible heterogeneity of the real sol-
tensified clustering of void elements and the concomitantds, which would confine the validity of the calculated per-
vanishing of solid walls. The specific surface area decreasaseability value to the neighborhood of the thin section.
with the increasing number of interwoven cells, until a lim- It must be stressed that the methodology developed in this
iting value is reached, beyond which the surface area remairgaper uses a minimal amount of structural information to
unchanged. This is a very useful property of multicell FBM reconstruct the medium, namely, the porosity and autocorre-
media, since the desired value of the specific surface area c#ation function only. Theoretically, higher moments of the
be reached with no dependence on the overall size of theorrelation function are needed for reliable reproduction of
generated medium. the pore structure. It is understood that the role of these
The Stokes equation for creeping flow conditions couplednoments cannot be rigorously substituted with simplified
with the continuity equation were solved numerically usingcorrelation algorithms, such as the FBM process. However,
SOR and CG techniques. The permeability of the reconthe methodology presented in this paper provides a simple
structed media was then calculated as a function of the paneans for the reconstruction of porous media, combining
rosity and the Hurst exponent value. Because of the reducomputational cost effectiveness, lumping correlation prop-
tion of the percolation threshold at relatively larigevalues, erties into few working parameters, and sufficient resilience
the calculation of finite permeabilities in low porosity media toward matching of the generated media to actual porous
was made possible. The application to real porous solids wamaterials.
straightforward. Physical sections of the material were digi-
tized. and the porosity anq au;ocorrelation function were de- ACKNOWLEDGMENTS
termined with an appropriate image software. Subsequently,
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